

 Page 1

Architecture Driven Information Sharing
Extracted from the SOPES IEDM Specification Annex A: Modeling Profile Description

The following information was directly extracted from the Object Management Group (OMG) Shared Operational
Picture Exchange Services (SOPES) Infromation Exchange Data Model (IEDM) specification. In the fall of 2010, The
Object Management Group is expected to adopt the Shared Operational Picture Exchange Services Specification
(SOPES) IEDM. The SOPES IEDM specification formalizes a platform independent set of data patterns for the
construction, parsing and processing of JC3IEDM semantics for situational awareness and collaborative planning. The
data patterns apply directly to a set of transactions for the MIP Joint Consultation, Command and Control
Information Exchange Data Model (JC3IEDM: version 3.1 c ratified December 2007). The specification provides this
set of data patterns as building blocks for the exchange of information that is applicable to a wide range of
operational communities, including:

 First Responders (e.g., Police, Fire Department and Emergency Medical Personnel);

 Government Agencies (Federal, Provincial/State, and Municipal);

 Non-Governmental Organizations (NGOs);

 Other Government Department (OGD);

 Private Volunteer Organizations (PVOs);

 Para-military and security agencies; and

 Military (Joint, land, maritime, air, space and coalition).

These communities have comparable requirements for shared situational awareness, and collaborative planning.
Their operations are increasingly crossing organizational, agency and national boundaries. The participating
organizations are required to collaborate on asymmetric real-time operations such as: Crisis Response, Disaster
Recovery, Humanitarian Aid, Sustainment and Support Operations, Public Health and Safety, Stability Operations and
Homeland Security. The scope, complexity and frequency of these operations are presenting significant
communication challenges. The SOPES specification provides a core set of information patterns that have the
potential to bridge evolving community semantics and ontologies.

However, the SOPES modelling profile can be used to address information requirements beyond the JC3IEDM. The
profile has been recently integrated into the second version of the Unified Profile for DODAF and MODAF to extend
the abilities to architecture frameworks to specify information sharing and information protection policies within an
enterprise, system of systems or systems environment. Annex A to the SOPES specification describes this modelling
paradigm.

A.1 Overview

The modeling approach used in this specification describes a set of reusable information patterns (building blocks)
for a structured information store; in this case the JC3IEDM. The approach is intended to specify the operational
policies for the composition, construction, processing and protection of information composites (or aggregates or
business objects) as they are shared within and between operational nodes (e.g., systems, applications or services).

The approach encompasses the following architectural elements:

Contract – A contract represents a grouping of semantics and information flow controls which specify a formal
information sharing agreement between two or more operational nodes or participants in a domain or community
(e.g., Community of Interest [CoI]). Although provided and described in the approach, this element is not a
normative component of this specification which seek to focus on the transactional information patterns for the
JC3IEDM, the contracts and semantics are deemed the purview of the operational communities such as MIP.

 Page 2

Figure A.1 - Alignment to the UPDM

Semantic – A semantic represents the build policy for an information composite or data composite that is specified
as meaningful to participants (applications, systems and users) in a particular domain or community. Only exemplar
semantics are provided in this submission as guidance to the design and development communities.

Transactional - A Transactional represent the build policy for a reusable information building blocks, often realized as
business objects comprising the community logical data model, for which there is likely also an underlying
information or data store; they maintain the referential and data integrity of that store. Transactionals form the core
of this specification.

Wrapper - A Wrapper directly maps to a data instance (e.g., row of data in a database application) in the logical data
model and the physical data model.

Entity - An Entity is a Class mapping directly to the Physical Model specification for the underlying datastore.

Figure A.1 illustrates the proposed relationship between four architectural views of the UML Profile for DODAF,
MODAF, NAF and DNDAF (OV-2, OV-3, OV-7, and SV-1 1). These views combine to describe the flow and language of
communication within the enterprise, operational environment of system depicted by an architectural model.

The OV-2 identifies the flows of Resources (material, energy, organization, services, and/or information) between
operational nodes which fall into the context of the architectural model. The flow of these need resources are
realized on a “needline” between two or more operational nodes. Information flows realize the exchange of
information-composites, which represent the aggregation of information and data elements described in the OV-7s
and SV- 11s.

The OV-3 characterizes the flow of the information composites by specifying frequency, timeliness, safeguards,
quality, etc. for each information flow
(Information Exchange Requirements
[IERs]).

The modeling approach aligns information
exchange requirement or information
flows (OV3) through to the logical and
physical information definitions (OV-7 and
SV- 11 respectively). The models establish
policies (or rules) describing the logical
construction of composite information
from the information and data elements
defined in the OV-7s and SV-1 1s. Each
subtended element is built into a
construction plan to systematically provide
the information specified on the needline.
The models are intended to provide
traceability between the IERs and the
application logic used to combine
information and data elements of the
information stores.

The contracts group the semantics of the
community into information sharing
agreements. Providing a separation
between the agreements and semantically
complete information-composites makes
the semantics architecturally reusable
components.

Each contract (information sharing
agreement or ontological commitment)
comprises one or more semantics (i.e., a
COI exchange pattern with a defined

 Page 3

Figure A.2 - Alignment to the Zachman Framework

meaning and purpose), which are specified by the participants to define information of relevance to their
community. Each semantic is composed of one or more “Transactionals,” which specify the logical information
elements to be exchanged and how they are combined to meet the semantic requirements of the community.

The “Wrappers” represent the bridge between logical element of the transactional patterns and the physical data
definitions SV-1 1, the Data Model. At the semantic, transactional, and wrapper levels there may also be formal
domain rules and constraints that must be honoured by the parties to the contract.

A.1 .1 Other Architecture Frameworks

A separate alignment can be presented for other architectural frameworks. However, with the OMG's current focus
on the UML Profile for DODAF and MODAF it seemed reasonable to present the architectural alignment to the
related frameworks (e.g., DODAF, MODAF, NAF, DNDAF, PSAF and others). As an example the alignment to the
Zachman Framework is depicted in Figure 2 (above).

A.1.2 Model Extensibility

Later in the document the modeling approach will be extended to model domain filters and attribution which extend
the policy models for information tagged with security, Quality of service and other information considerations.

A.1 .3 Modeling Objectives

The following objectives are critical to developing the concepts for policy based information interoperability:

 A modeling profile based on UML;
o Explicitly capture, as part of architecture, the business rules for the export, transform and load

processes, which are typically embedded in middleware applications. These include:
o Community semantics,
o Data store transactions,
o Transformations (re-usable data patterns),
o Data suppression filters, and

 Domain business rules.

 Assure that the concepts captured in the model enabled Model Driven Architecture (MDA)
transformations to executable policies, which were alterable in the operational environment;

 Make the models useful and meaningful to stakeholders and users;

 Alignment with evolving architecture frameworks;

 Provide full traceability to requirements; and

 Page 4

Figure A.3 - SOPES IEDM Scope

 Design for change.

In an object environment (e.g., OO DB or object layer), support objects can be used (with a single existence) by
multiple information-composites (semantics and transactions) providing a highly efficient use of information.
Traditional approaches use a single information instance per composite causing increase memory and processing
(e.g., data synchronization). Using the multi-use approach enables “event-driven global update.” A single data
change (new instance of data/information) can initiate the
build and release of all transactionals and semantics in
which the element is contained.

Within the context of data, information and knowledge
management, ontology is defined as an information model
describing a set of concepts within a domain of interest and
the relationships between those concepts. This specification
describes a set of information exchange concepts for ECM
situational awareness and collaborative planning. The IEDM
describes a set of information and knowledge patterns
based on JC3IEDM-compliant transactions and information
elements (i.e., data entities).

The Information patterns (Chapter 10 and 11) describe:

 Individual information elements;

 Classes: sets, collections, or types of objects;

 Attributes: properties, features, characteristics,
or parameters;

 Relations: ways that objects can be related to
one another, for data storage and in the construction of semantics (meaningful data object: this
specification); and

 Events (watch points): changes to the data environment (e.g., attributes or relations) that trigger an
exchange of information.

The specification describes a set of policies for constructing and interpreting information exchanges using reusable
architectural components (information building blocks) aligned directly to commonly used architecture frameworks
aligned directly to commonly used architecture frameworks as illustrated in Figure A.1 and Figure A.2.

A.1.4 Modeling Concept

The class models describe the policies (or rules) for processing information datasets; and aligning the datasets to the
underlying data schemas. The objective of the models is three fold: 1) explicitly capture these key business rules as
part the enterprise and System architectures; 2) retain corporate knowledge and understanding; and 3) separate the
business rules from the underlying middleware application. Meeting these objectives, this modeling approach
delivers auditable systems with increased interoperability, portability, and assurance.

As illustrated in Figure A.3, the semantics, transactionals and wrappers document a set of policies for the processing
of reusable informational building blocks that align the information Exchange Requirements specified in an
information exchange requirements to the information schemas underlying the operational environment.

A “Semantic” represents a set of policies for the construction or marshalling of information objects (i.e., a dataset)
that is meaningful to the community (e.g., applications, systems, and users that form the context of architecture
Model). The semantic is the uppermost concept in the ontological structure. When enforced by a system or
application, a semantic realizes a complete information object (e.g., message payload) that provides a clear and
consistent meaning for the community.

A “Transactional” specifies the policy (or rules) for the construction or marshalling of reusable information sets (e.g.,
realized as information objects) derived from the underlying logical model and associated physical data store(s).
These plans form a set of informational building blocks that encapsulate semantics of the stores and set the rules for
semantic completeness. The Transactionals also assure a semantically consistent treatment of information as it
transitions in and out of the data store.

 Page 5

Figure A.4 - Realization of Information

The term “Transactional” was adopted to align its core concepts with that of a database transaction - a concept well
understood by the data and information management communities. The base transactionals would encompass the
referential and data integrity of the datastore(s). The transactions are combined to complete the semantic
requirements of the community. When enforced by information systems and applications the transactionals realize
composite information sets needed to complete one or more semantics.

The “Wrappers” form the foundation of the modeling approach. The wrappers are a logical representation of
instances of information elements that can be held within a data store. Each wrapper represents a single instance (or
row of data) of data from the underlying store.

A.1 .5 Realization of Information

The models describe the policy (steps in a process) for systematically constructing or processing fused information
sets (semantics). By definition the semantics ensure that the content exchange conforms to agreed community
information patterns or semantics. It is important to understand that the models represent the specification for the
aggregation or marshalling information - it is not the information carried on the needline; the actual information
carried is referred to as an information-composite.

Definitions:

 Construction or Build: The process of aggregating information and data elements into their composite
structures.

 Marshalling: The process of de-aggregating information composites and storing the information and data
elements in their specified information or data stores.

A.1.6 Pattern Reuse

The modeling promotes the reuse of subtended elements and composites:

 An InformationComposite at the Semantic level can be reused to fulfill multiple commitments (Contracts),
which use different messaging standards (e.g., National ADatP-3, OTH-Gold, MIP PDU).

 An InformationComposite at the transactional level can be reused within multiple transactional and
semantics.

 An informationElement can be reused in multiple InformationComposites such that a single change (i.e.,
new data) cascades through each of the informationComposites enclosing the element; resulting in the
updating of every contract and semantic
holding the data.

The model approach supports derive information
patterns (Figure 4) that enable concepts like event
driven global update of all InformationComposite
enclosing single instances of data enclose in well
specified semantics.

A.1.7 Modeling Elements

Figure A.5 illustrates the basic modeling elements
used in the models and the meanings applied to them.
It is evident from the limited and standard set of
modeling elements that the core concepts are not
overly complicated and supportive of a broad
community of practitioners.

 Page 6

Figure A.5 - Basic Modeling Elements A.1.7.1 Class Diagram

Figure A.6 - Modeling Elements

The modeling approach uses UML Class Diagrams to
identify all the subtended Classes of a Semantic or
Transactional. Those stereotyped as “Transactional”
are decomposed on a secondary class diagram. This
modeling style aids in the readability of the models
and simplifies each model element. Typically, the
“Diagram Name” matches the “Enclosing Class”
name whether a Contract, Semantic or a
Transactional. Again this is for readability and
publishing of the model.

A.1.7.2 Classes

Core modeling concepts: contracts, semantic,
transactions and wrappers are included in the class
diagrams as class stereotypes (Figure A.6).

Navigating the arcs of the class diagrams defines the
construction plans for each information aggregation
(i.e., transactions and semantics).

Classes fall into two categories on each diagram:

 Enclosing Class

 Subtended (Support) Class

Each class diagram identifies policies (rules) for
building reusable information composites in the
runtime environment. A.1.7.3 Enclosing Class

A.1.7.3.1 Overview

The “Enclosing Class” is the focus of a diagram and
encapsulates the policies associated with the
aggregation of information at runtime. Each
Enclosing Classes realizes an object that encloses the
aggregate of information from each of its subtended
classes.

On the diagram, the enclosing class is the one to
which the white diamond symbol on the association
line is attached. The modeling style has one
enclosing class on each diagram, which typically shares the same name and the diagram title.

In a runtime environment, semantics and transactions are only instantiated in response to a data event, and only
persist for the period needed to construct or marshal the information-composites specified. The information
aggregates, enclosing the information element / data event, are built in response to that data event.

Semantic and transactionals do persist their reference and policy data patterns comprising the community
semantics. This informs the environment of the information instances active in the particular operational domain.
These elements are persisted until explicitly removed from the systems’ or applications’ domain. This concept of
persistence applies to both the semantic and transactional objects.

The information or leaf-node elements of the information patterns are persisted in the operational domain.

A.1.7.3.2 Identifying Class

In each diagram, there exists one and only one subtended class that is labeled as the “Identifier.” The Identifier
indicates that the class on the labeled aggregation holds data that identifies which instance data is included in the
build or aggregation. This information typically includes Database Keys or Unique Identifiers of some venue.

 Page 7

Figure A.7 - Single Instance Data

Figure A.7-1 – Addition of Filters

A.1.7.3.3 Subtended Class

The “Subtended (Support) Class” represents those classes, which are included within the build plan of the “Enclosing
Class.” Each subtended class is linked to the enclosing class through an enclosing aggregation arc. Subtended classes
can be Transactionals or Wrappers.

A.1.7.4 Containment (Aggregation) Arc

The aggregation arc is read with inverse logic. In the information (/data) environment - the enclosing Class only exists
if the mandatory subtended Classes exist. UML traditionalists would read the arc in the opposite direction. However,
the models describe a build or construction policy for aggregated information sets, which require the existence of
their subtended (support) classes to meet their semantic rules.

If mandatory subtended objects (identified through its multiplicity) do not exist, then the enclosing object cannot
form or build and the policy fails. If optional subtended objects (identified through its multiplicity) do not exist, then
the enclosing object builds with the information held by the existing subtended object.

As illustrated in Figure A.7, a single subtended element
can be contained by multiple enclosing classes. This
specifies that a change in that subtended object cause
both enclosing objects to build at runtime. By cascading
this concept, the models establish policy for event
driven global update capability - one data event cause
all semantics enclosing that subtended object to build
and, if meeting there semantic requirements, and be
released and fulfill ontological commitments of the
participating communities.

In addition. As illustrated in Figure A7-1, the
containment arcs can contain a qualifier on the
association which acts as a fixed fileter during the
construction (aggregation) of a dataset under the
prescribed pattern. These filters restrict the the
collection of data to those datasets whose attribute
(‘attributeName’) has a value of ‘properValue’. E.g.,
self.securityLevel = “unclassified”. Filters (qualifiers)
are used selectively include or exclude information
instances based on specific domain value instances at
runtime.

The formal SOPES Model provided in Section 10 does
not caontain qualifiers as they are used to refine the
model to specific operational requirements. With
respect to the formal SOPES Specification filters were
identified as extensible features.

A.1.7.5 Dependency Arc

The dependency arc is used in the contract
specification to identify the relationship between the
contract and the semantics, where a change in the
semantic affects the semantics of the contract -
resulting in the exchange of information. The arrow
representing a dependency specifies the direction of a
relationship, not the direction of a process.

 Page 8

A.1.7.5.1 Association

Navigable associations indicate that there is a relationship present between the associated entities in the underlying
data store. Where an association is made between a Wrapper class and a Transactional class it is understood that the
relationship exists between the Wrapper and the Identifier of the Transactional class.

A.1.7.5.2 Identifier

There exists on and only one “identifier” on each semantic or transactional diagram. The “identifier” identifies the
subtended class that holds data elements needed for the construction of semantically complete information
composite. This class would contain, as a minimum, the base Global Unique Identifier (e.g., Database Key, foreign
keys or unique identifier) that would differentiate which transactional or wrappers (information element instances)
are included in the construction of the composite (e.g., foreign key relationships).

A.1.7.5.3 Multiplicity

Multiplicity is presented on the aggregations to identify:

 The optionality of the subtended class;

 The number of information instances to be included in the construction of the information composite
specified by the composite class (e.g., transactional or semantic). The multiplicity of the composite class is
always “1.”

Table A.2 - Multiplicity

Multiplicity Indicators

Indicator Meaning

0. .1 Zero or one Optional

1 One only Mandatory

0..* Zero or more Optional

1..* One or more Mandatory

0. .n Zero to n (where n > 1) Optional

1. .n One to n (where n > 1) Mandatory

A.1.7.6 Constraint

The Constraints, Figure A.8, govern the construction for the composite information object. There are three areas
where the modeling includes explicit constraints:

 Navigation constraint is used to constrain the inclusion of branches of the semantic tree based in specific
domain value instances at runtime. Navigation constraints are primarily used when dealing with
generalizations in the underlying data model (e.g., to select a specific subtype). The use of variable based
constraints that apply only at runtime enables the selection of the specialization at runtime - allowing for
variations in the semantic based on context. The OCL used in the models guide the inclusion of
aggregations in the construction sequences of the defined patters and not intented to ne executable.

 Page 9

Figure A.8 - Constraints

 Domain Rules are used to govern the allowable combinations of domain values in the underlying datastore
(not illustrated). Domain rules can be contained within a single wrapper (entity / table) or cross tables.
Domain rules are captures within the annotations of the classes.

Constraints are modeled in Object Constraint Language (OCL). In the future constraint definitions may be modeled
using the structured English or Semantic Business Vocabulary and Rules (SBVR). To properly interpret a constrained
aggregation, it is intended that the constraint be evaluated before its multiplicities. Should the constrain fail, the
multiplicity is implicitly evaluated a zero.

For all instances of the constrained navigation the initial element 'self' is the enclosing Transactional,
and in the case of the example from diagram A.8 self refers to ‘InformationTransactional_1’. The second element of
the constraint is the Wrapper instance which must be a directly subtended element of the enclosing Transactional,
and in this case the Wrapper instance is 'Wrapper_1'. The third element is the named Wrapper Attribute featured
on the specified Wrapper, and in this case this element is 'catCode'. The final element is evaluated against the
constraint, and in this case the value is 'domainValue'.

A.7.7 Tagged Value

A tagged value is a combination of a tag and a value
that gives supplementary information that is
attached to a model element. A tagged value can be
used to add properties to any model elements and
can be applied to a model element or a stereotype.
These tags are used to identify to the implementer
specific information about the design pattern not
carried with the attributes of the runtime object.

The tagged values used in the model include:

 isIdentifier identifies the start point for the
build of an information composite or artifact.
There exists one “identifier” per enclosing class.

 isWatchPoint both identifies the start point for
the construction of the semantic contained in
the model and identifies to the runtime what
triggers the build of a semantic (data change in
the subtended object); this tagged value, is a
Boolean and assigned to an aggregation arc
within a class model.

EntID holds the unique identifier for its corresponding entity in the underlying datastore. entID is associated with
classes stereotyped as “Wrapper.”

EntName holds the name of its corresponding entity in the underlying datastore. entName is associated with classes
stereotyped as “Wrapper.”

A.1.7.8 Independent Existence of Information Elements

Each subtended element within a model exists and persists independently from its enclosing classes; as a row of data
can exist within a database table without the referential integrity necessary to complete a transaction or build
aggregate information sets. This independent existence of information and data elements (a non-traditional
interpretation of class diagrams) reflects the reality of information objects:

 Information or data elements can exist in the environment without providing the completeness necessary
for meaningful community semantics; and/or

 Information elements may meet the requisite requirements for one community but not another.

 Page 10

A.2 Reading the Models

A.2.1 Semantic Construction

The first principle of the modeling approach is that the mandatory (multiplicities of 1, 1 ..n, 1 ..*) subtended must
exist in the information domain as a prerequisite to the continuation of the build of enclosing transactionals. This
policy ensures:

 Semantic completeness of all aggregated data sets based on those policies; and

 Semantic completeness of all data marshalled from received information composites (semantics must
complete before information and data elements a place in information stores).

A.2.2 Marshalling a Received Data

When information is received its semantic type is identified, the information and data elements are parsed and
processed. If all mandatory elements of the semantic are available – the information and data elements can be
further processed as appropriate (e.g., placed in a data store).

If the semantic does not complete there are several options to the Designer: from discarding the data and reporting
an error to and interactive request (from the producer of the data, from local store, from an operator, etc.) for data
needed to complete the semantic. These are operational and design considerations outside the scope of this paper.
In general, it is expected that at the COI-level some policy with respect to guaranteeing referential completeness
would be established (e.g., a sender can only embed an information reference if it can provide the referenced data
on request).

A.2.3 Class Hierarchy

The models can be developed as a top-down model starting with conceptual information sharing agreements which
realize the needs of a community or needline. The models can also be developed using a bottom up approach using
the data and information attributes of a legacy database application design (database schema) or through and
iterative cycles of specification at each of the conceptual, logical and physical layers of the model. The intent is to
provide users, analysts and developer an evolutionary method of development that yields reusable architectural
components. As previously identified, the modeling constructs, illustrated in Figure A-1, include:

 CONTRACT) - identifies the semantics included in the information sharing agreement.

 SEMANTIC – specifies the information elements to be aggregated in to the document, message or
information composite to be shared based on the community agreements.

 TRANSACTIONAL – specify the build-plans of information element from the foundation classes.

 FOUNDATION – identify the based information and data elements and align logical “wrapper” classes that
underpin the models. The wrapper classes represent a single instance of an information element in the
environment.

The models can also be developed bottom-up and middle-out depending on the use of legacy application and data
stores, or the focus of the projects involved. The modeling techniques employed provide the ability to associate class
attributes to accommodate differing naming conventions as one moved between the physical, logical, and
conceptual (strategic or business) views of the architecture. The techniques also provide the ability to model
attribute-method relationships to support data transformations (e.g., when integrating legacy data environments
into a system-of-systems environment).

Figure A.1 illustrates the relationships between elements of the models and other views in an architecture
framework. It is intended that the policies, or rules, generated from the models realize the elements currently
defined by the UPDM; specifically, the realization of a needline’s information-flow and its information-composite
(e.g., Message). The information composite is realized by the enforcement or execution of the derived policies by
deployed systems, applications and services in the environment. This specification translates the models into
multiple platform specific models (PSM), i.e., a set of JAVA Classes (Annex E) and XML Schema (Annex D).

 Page 11

Figure A.9 - Contract

The Contract enables the specification of community semantics outside the constraints of a needline and its
associated operational-nodes. The Contract allow the formation on conceptual communities of interests (CoIs)
outside the specification of its operational configurations. In its simplest form, a Contract can have a one-to-one
relationship with a Needline.

The remainder of this section describes the use of the policy models within an architectural model. These
descriptions will reflect a top-down development strategy and are critical to understanding the utility of the SOPES
IEDM model. The integration of policy models with the SOPES semantics metamodel enables a rich collection of
information management techniques to be executed by an operational information exchange framework.

A.2.4 Stereotypes

The models define the following stereotypes to describe the hierarchy of the models, tying business architecture
requirements to the underlying information stores:

 Contract identifies a class as a contract;

 Semantic identifies a class as a Semantic;

 Guard identifies a class as a semantic guard;

 Transactional identifies a class an enclosing
transactional;

 Wrapper identifies a class as a wrapper for an
instance of an information element;

 Entity (which may be prefixed with the name
of the data store and version) identifies a
Modeling Element.

A.2.5 Contract

A “Contract” is simply an agreement to exchange
information between two or more participants. As
illustrated in Figure A.9, the contract is uses to realize
the information exchange requirements of either a
needline or a community of interest. The Contract
sets a policy (exchange rules) by identifying which
Semantics are included in the contract. This
relationship is established by setting a dependency
between the contract and the included semantics.

The semantics can be re-used to satisfy the
requirements on multiple contracts; meaning, that any time there is a data change to the information contained
within a semantic, the change would be reported to all the participants to each of the contracts that include the
semantic. Applying this rule means that:

 Semantics become reusable architectural components; and

 Event (data change) driven global update levels of interoperability are achieved.

 In addition to the containment for the semantics comprising and information flow, a “Contract” extends the
definition of information exchange requirement to include:

o The participating operational nodes;
o The communication channel;
o The distribution specification (e.g., language, schema, format, syntax and protocol);
o The agreed quality of service;
o The potential threats to the exchange;
o The information sensitivity (e.g., caveat and classification); and
o The participants and their required accreditations.

These concepts are not core to SOPES IEDM, and thus, are not discussed in this document. They are part of a broader
discussion on the role of architecture and architecture frameworks. They play a critical role in specifying the context

 Page 12

Figure A.10-Semantic

Figure A.11 Filtered Semantic

and requirements for information exchange and thus are beyond the critical and foundational information (or
semantic) interoperability addressed by this specification.

A.2.6 Semantic

A semantic, Figure A.10, represents the
specification for a complete data, which is
considered meaningful to a community,
organization, system or application; meeting one
or more of the information flow requirements
specification for a needline. The semantic is
defined by the community, needline or
application interface, while transactionals are
closely linked to the underlying data store. The
semantic can be thought of as a schema (e.g.,
IC.XSD) and the InformationComposite thought
of as the instance document (e.g., IC.xml).

As illustrated, class attribution is not carried by
the semantic. The semantic encloses and carries
all attributes contained within its subtended
transactionals and wrappers.

A.2.6.1 Filtered Semantic

A “Filtered Semantic” represents a semantic with all filters, contained in the semantic or its support transactionals,
set in the operational environment. Filters can be set by default during design or added during runtime. The
constraints, describing a filter are modeled as illustrated in Figure A. 10. A filtered semantic may be used to enforce
policies that enable brevity and efficiency by removing from the InformationComposite content (but leaving a
reference) that is assumed, or known, to have already been exchanged.

A.2.6.2 Guard Semantic

As “guard semantic” is modeled in the same
manner as a semantic (above). In practical terms
the “guard” is a semantic stereotyped as -
“guard.” A Guard builds like a semantic - but
works to lock the information contained in its
structure from release on any contract. This
concept will be explored in later document that
address the potential extensions to this UML
modeling profile information (semantic)
interoperability.

Identifying this concept is intended to illustrate
the extensibility of the approach as mandated by
the request for proposal (RFP).

 Page 13

Figure A.12 Transactional

A.2.7 Transactional

The Transactional, Figure A.12, represents the core
concepts within the models. They allow the
information architects to construct reusable
informational building blocks, upon which to build
multiple community semantics. Transactionals
document the constructions plans for an
information/data store and ultimately link
community information needs to the structure of
the underlying stores.

Although there is only one form of transactional, in
the course of the follow-on discussion we preface
the transaction to identify its role in the
construction plan and the structural hierarchy of
the semantic:

 Enclosing _Transactional identifies the
transactional which forms the focus of the diagram. The enclosing transactional can be identified by the
diamonds on the aggregation arc. They are always on the role-end associated with the
Enclosing_Transactional.

 Subtended_Transactional (or Support_Transactional) identifies the transactionals contained by a enclosing
transactional.

 Identifing_Transactional or Identifying_Wrapper, identifies the subtended transactional or wrapper that
carries the keys or identifiers needed to built the aggregation. The Identifing_Transactional or
Identifying_Wrapper is identified by the “Identifier” label on its aggregation arc; representing an
aggregation arc with a tagged value isIdentifier set to “true.”

 WatchPoint_Transactional is a transactional with an associated watchpoint data event that triggers the
build of a semantic and all its subtended transactionals. Each WatchPoint Transactional has one aggregation
arc with an 'isWatchPoint' tag set to True.

A single aggregation arc may have both an isIdentifier tag and an isWatchPoint tag. This Transactional must be built
starting with the Wrapper at the end of the aggregation arc with the isWatchPoint tag. If both an isWatchPoint and
an isIdentifier tag are present in the Transactional model on different arcs then the Transactional may be built as a
WatchPoint or a support Transactional.

The rules that identify if a Transactional forms a watchpoint:

 Must contain a composition arc, tagged as 'WatchPoint = True,' that connects to a Wrapper;

 Must hold at least enough data to provide referential integrity when persisted to a data store;

 Complete in it's meaning, ie modeler must include all mandatory as well as optional tables that when
combined, provide a coherent picture;

 Comprise basic building blocks for Semantic Artifact; and

 Maybe subtended as well as standalone.

A.2.8 Foundation

A.2.8.1 Wrapper

A Wrapper is a Class that directly maps between the logical data model and the physical data model. Wrappers
therefore exist between the Logical Information Security Architecture and the Physical Information Security
Architecture. Figure xx illustrates how this mapping is modeled.

 Page 14

Figure A.13 - Constraining Navigation

A wrapper represents the metadata definition for a single instance (or row in the case of a traditional RDBMS) of
data from the underlying information store.

A.2.8.2 Entities

The entity calls represent the physical entity (table) definitions, including the complete attribute metadata
definitions, as well as attribute domain and domain business rules. The metadata associated with the entity in
assigned to the wrapper and carried through the remainder of the model.

A.2.9 Build Plan

The models specify the policies or rules governing the aggregation or marshalling of information elements included
in the community semantics in a manner that is consistent with the structures of the underlying data store. These
policies bridge between the community semantics and information patterns (Transactionals) derived for a given data
store. The policies (or rules at execution) are enforced by the information applications and services designed to
broker information within and between information systems. The models represent a set of architectural views that
provide a platform independent specification for the environmental policies governing the exchange of information
between operational nodes.

The information pattern provide a systematic build (or construction or navigation) plan for the aggregation of
information elements into the Information composite (semantics) agreed to by the community or the participants
(systems, applications, services or users) to the exchange. Adherence to the build plan assures that information
stores are used in a consist manner and the semantic integrity of the information is maintained.

The SOPES Specification (Annex C) provides guidance on the sequence of the build plan in the form of an
“oclConstructionSequence”. These elements are intended to be informational in nature and not intended to
executable in their current form. It is up to a developer to determine if it is beneficial to include these sequences
into the formal expression of function.

A.2.9.1 Initiation of Build

A “Build” refers to the formation of a semantic or transactional within the environment to accommodate a change in
information available in the operational environment. The build or processing of new information starts when new
information, encompassed by a “watchpoint” transactional, is identified. The existence of a new data event within a
watchpoint causes that watchpoint transactional to build, together with all the transactionals and semantics that
enclose that watchpoint.

The watchpoint works in a similar manner to a database trigger, but initiates a business object to respond to its
environment - rather than a database application triggering a store procedure.

A.2.9.2 Navigation Constraints

Figure A13 illustrates the ability of the architect to
adorn the models with constrains that direct
specific build steps based on the value of an
attribute at runtime. This addresses inclusions or
exclusions of specialized objects which can only be
determined at runtime. The build plans integrate
these navigation constraints.

The SOPES OCL utilizes two constraint patterns that
are directly related to the ConstructionSequence.
The naming convention for these two patterns
include their respective roles within the
ConstructionSequence i.e., a_Discriminator_mN0,
a_Discriminator_mN 1, or mN0_Enforced_a,
mN1_Enforced_a.

These two types of ConstructionSequence
constraints are linked by the use of attributes

 Page 15

whose enumerated domains include a specific reference from the “a” object type to the linked mN# object types.

The use of a_Discriminator_mN# requires that the object "a" have an attribute whose enumerated domain
references a set of object types mN# as well as a readPlan between “a” and the object type in the set. For the sake of
clarification it should be noted that though this domain explicitly references these mN# object types the
enumeration may also includes other choices that are not associated to objects. In the cases of a Wrapper to
Transactional based Discriminator the relationship is to the WatchPoint/Identifier of the Transactional

As an example; in Figure A.1 1 objects of type Point have the enumerated domain attribute point-category-code
which references objects of type AbsolutePoint the identifier of Absolute_Point (enumerated domain value ‘ABS’)
and RelativePoint the identifier of Relative_Point (enumerated domain value ‘REL’) as well as other attribute values
which do not reference objects of any type. If in Point_Item an object of type Point exists and the data in point-
category-code is ‘ABS’ then the associated (and now mandatory) Absolute_Point object must exist for the Point_Item
to complete instantiation correctly, furthermore the ‘ABS’ data also prohibits the construction of a Relative_Point
object.

As a counterpoint to the a _Discriminator _mN# constraint is the mN# _Enforced _a which requires that if an object
of a set mN# exists then the enumerated domain attribute in “a” must be that value which refers to the specific
object type member of mN#. Continuing our example from above, Location has the enumerated domain attribute
location-categorycode which associates Location with objects of type GeometricVolume, Line, Point, and Surface. In
objects of type Point_Item the object of type Point is the identifier and is constructed before the object of type
Location, this requires that the enumerated domain value for the attribute location-category-code be ‘PT’ if the value
is any other then the Point_Item should not complete instantiation.

Object constraint language is used to constrain navigation (Section 8) on a containment arc to assure the correct
aggregation of subtended element in an information construct and to describe the navigation/construction plan
(Annex C) derived from the UML. An exemplar for the use of navigation constraints is illustrated in Figure A. 11.

Table A.3 provides an example of the OCL used to constrain navigations:

Constraint Details

Point_Item_Discriminator_Absolute_Point inv: self.Point.point-category-code='ABS'

Point_Item_Discriminator _Relative_Point inv: self.Point.point-category-code='REL'

Point_Enforced_Location inv: self. Location.location-category-code='PT'

The Wrapper containing the evaluation attribute (e.g., Point) on a navigation constraint must have a multiplicity of 1
(1..1) within the data pattern. . In reference to Figure A.12 and Table A.3 both Point and Location are constraint
evaluation Wrapper instances and thus are required to have a cardinality of 1..1. It should be noted that the
Wrapper Attribute which holds the value must comply with the model's domain constraints and as such it is possible
that the value held by the Wrapper Attribute could properly be expressed as NULL.

 Page 16

A.3 Developing the Information Exchange Models A.3.1 Top-Down Approach

For new environments, containing no legacy, a top down approach can be used. A top-down approach follows the
traditional enterprise architecture methodology.

A.3.2 Bottom-up Approach

In most environments, new architectures are developed based on legacy environments, which have significant
investment in their underlying information store. It would be unreasonable to propose a strategy the only supports a
top-down approach that may not align with legacy environments in the long run; requiring major upgrade and
modification to working systems. A bottom-up approach addresses the possible integration of legacy information
applications and stores.

Bottom-up was the approach used to develop the SOPES IEDM specification and prototype implementations. The
JC3IEDM, in the form of the MIP information Resource Dictionary (MIRD), was used for the development of the
SOPES IEDM Specification Foundation Model. The MIRD content documents the results of a legacy ongoing COI
consensus process that captures many unique consultation, command and control requirements in a normalized and
generic model. In the process, visibility of the individual business requirements has been somewhat lost.

Today a bottom-up approach can document the available normalized and generic transactional semantics supported
by the information stores, but not the business requirements from evolving information architectures.

A.3.3 Hibrid Approach

The most likely approach to be adopted by projects is a hybrid environment where team members would define
business requirements in a top-down approach, and others would build up project information based on a bottom-
up documentation effort on the legacy information stores. This requires the two efforts to align at the semantic level
of the model. The models cater directly to this requirement.

The hierarchical modeling approach provides SOPES implementer with several options and locations where this
integration can occur.

A.4 Linking to UPDM

A.4.1 Connecting to the Architecture

One of the first steps in the architectural process is the identification of the needlines between operational nodes. As
illustrated in Figure A.14 the needline represents a stereotyped association between two operational nodes.

Figure A.14 – Needline

The next step in the architecture process is the identification of the information flows between the operational
nodes; bidirectional information flows are illustrated in Figure A. 15. In the runtime environment the information
flows realize the exchange of information-composites comprising the content of a community semantic.

 Page 17

Figure A.15 - Information Flows

The information-composites are realized by the execution or enforcement of the information exchange policies
defined by the models. The information exchange policies defined by the models (when executed) realize the
information- composites realized by the information flows Figure A.16).

Figure A.16 - Realizing Information Flows

Lastly, the information flows (information composites) are realized on the needlines (Figure A.17). At this point,
having semantic realized by the execution or the enforcement of policies derived from the semantic model we have
full traceability from the needline to the instance data in the SV-1 1 data store.

Figure A.17 – Semantics

 Page 18

Figure A.82 - Constraining Navigation

A.5 Community Defined Completeness

The modeling concepts presented support COIs implementing different approaches to specifying semantic and
referential completeness. This section will discuss exemplars, from the SOPES IEDM Specification, showing
alternative COI approaches for specifying completeness using the model.

In the SOPES IEDM specification the “Materiel_Item” and its necessary encyclopedic Type data (“Materiel_Type”) are
not formally associated until the Semantic (“Materiel _SA”) is formed. In that exemplar, the Materiel_Type is
identified as optional (multiplicity: 0..*). For the MIP community this appeared to depart from the referential
integrity prescribed by the JC3IEDM Schema (i.e., all Object_Item must be associated with an Object_Type
(multiplicity: 1 ..*). As illustrated in Figure 1.18, the Materiel_Item transactional does not include the Material Type
information prescribed by the JC3IEDM Schema. The SOPES submitters took the assumption that type_side data is
often preloaded into a data store and not required in each transmission. The authors provided the flexibility in the
specification for the individual communities to make these assertions in their specified semantics an or through the
use of filters.

Figure A.17 - Realization of Information

As illustrated in Figure A.19, the SOPES IEDM
exemplar semantic for Materiel (Materiel_SA)
encloses Materiel_Item and Materiel_Type, thus
aligning the referential integrity of the models and the
JC3IEDM Schema. The multiplicity could be defined to
require Materiel_Type infomration.

Alternately the community can extend the core
models to include additional transactionals which
embed the “Item” and “Type” side data. The SOPES
specification leaves this within the purview of the
individual communities. This approach is provides
flexibility and extensibility to the core specification.

 Page 19

Figure A.18 - Realization of Information

Figure A.20 - Domain Filter

A.6 Modeling Extension Examples A.6.1
Domain Filter

Domain Filters can address a number of
information quality requirements, including
network performance, information overload and
priority to name a few. In this section we will look
at the use of filters to address elements of
security (e.g., Filter based in security tags in the
data).

A filter is modeled as a constraint on the role end
associated with the enclosing transactional or
semantic. Figure A. 19 illustrates the inclusion of a
domain filter to the inclusion of “Transactional _1
,” which limits the inclusion of an information
_composite into the build, if its SecurityLevel
attribute is set to “unclassified.” An aggregate
security attribute can be modeled and evaluated
at runtime based on domain specific attribute combinations (i.e., with out the use of the specific subtended
“SecurityLevel” attributes). For example, in the context of Action, a domain policy may be that future planned tasks
are classified, thus:

 <<invariant>>{ if Wrapper::ActionTask.CategoryCode == "Plan" AND Wrapper::ActionTask.planned-
start-datetime > Time. Current THEN Context.SecurityClassificationLevelCode == "Confidential"}
(Computed Security Caveat)

 This security example can be extended in to other areas, including:

 <<invariant>> { if Wrapper::Wrapper_1 .Priority == "High"} (Quality of Service example)

 <<invariant>> { if Wrapper::Wrapper_1 .PrivacyCode == "Private"} (Privacy example)

 <<invariant>>{ if Wrapper::Wrapper_1 .Caveat == "NATO" OR Wrapper_1 .Caveat == "5Eyes" }
(Release-ability example)

A.6.2 Methods

Within the modeling approach, methods can be
used to specify transformations or aggregations of
attribute values during the build of an
informationComposite. Figure A.21 illustrates the
basic construction of a transformation. The
attribute(s) associated with the transformation
are link through dependency arcs. The index on
the arc is a tagged value which indicates the order
index of the parameters to the method. The order
index identifies the order of the attributes in a
method call.

 Page 20

Figure A.21 - Transformation

Figure A.22 - Processing Tags and Labels

Figure A.22 - Forced Data Change of label

A security example for the use of methods is
illustrated in Figure A.22. As illustrated, the method on
the enclosing- transactional processes the runtime
security level tags of the subtended-elements
processes and then sets security level on the
generated informationComposite. The diagram does
not prescribe the methodology for determining the
actual level - merely, that a runtime determination
needs to be made.

The specification and design of the method can be
handed off to a security analyst or linked to existing
policy. Either way, the need for a security decision
point in the processing of the information is now
captured in the architecture.

Note: the specification of the algorithm can be
modeled independently and added to the model. This
model only indicates the existence of the decision
point.

A.6.3 Forced Method

Figure A.23 illustrates a direct force of the security
level base on the existence of the subtended objects
by an analyst specification that a combination of
subtended information classes automatically
mandates a specification of a security level. In this case
the classification of the enclosing object is forced to a
level independent of the classifications of the
subtended objects.

This option adds flexibility to the security
considerations of the model.

A.6.4 Selective Replication

Figure A.24 illustrates attribute-to-attribute
association. This aspect of the notation can be used to
specifically select which data elements (attributes) are
processed during the processing of a composite
object.

This modeling approach can also be used to migrate
from physical names, to logical names to business
named (community terminology) as the objects build.

If the attribution is not provided, it is assumes that all
attributes are included in the build.

This modeling option also aids in the defining security
restrictions on the release of specific data elements.

 Page 21

 Figure A.23 - Selective Replication

Additional Infromation on SOPES, the modeling profile (including imolemented extensions) and the first SOPES IEDM

Implementation (COIL for SOPES IEDM) can be found on the ASMG website (http://www.asmg-ltd.com). Or by

contacting:

Mr. Michael (Mike) Abramson, President

Advanced System Management Group Ltd.
265 Carling Avenue, Suite 630

Ottawa, Ontario K1S 2E1
Tel: 613-567-7097 ext 222

Cell: 613-797-8167
Fax: 613-231-2556

http://www.asmg-ltd.com/

