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Architecture Driven Information Sharing  
Extracted from the SOPES IEDM  Specification Annex A: Modeling Profile Description 
 

The following information was directly extracted from the Object Management Group (OMG) Shared Operational 
Picture Exchange Services (SOPES) Infromation Exchange Data Model (IEDM) specification.  In the fall of 2010, The 
Object Management Group is expected to adopt the Shared Operational Picture Exchange Services Specification 
(SOPES) IEDM. The SOPES IEDM specification formalizes a platform independent set of data patterns for the 
construction, parsing and processing of JC3IEDM semantics for situational awareness and collaborative planning. The 
data patterns apply directly to a set of transactions for the MIP Joint Consultation, Command and Control 
Information Exchange Data Model (JC3IEDM: version 3.1 c ratified December 2007). The specification provides this 
set of data patterns as building blocks for the exchange of information that is applicable to a wide range of 
operational communities, including: 

 First Responders (e.g., Police, Fire Department and Emergency Medical Personnel); 

 Government Agencies (Federal, Provincial/State, and Municipal); 

 Non-Governmental Organizations (NGOs); 

 Other Government Department (OGD); 

 Private Volunteer Organizations (PVOs); 

 Para-military and security agencies; and 

 Military (Joint, land, maritime, air, space and coalition). 

These communities have comparable requirements for shared situational awareness, and collaborative planning. 
Their operations are increasingly crossing organizational, agency and national boundaries. The participating 
organizations are required to collaborate on asymmetric real-time operations such as: Crisis Response, Disaster 
Recovery, Humanitarian Aid, Sustainment and Support Operations, Public Health and Safety, Stability Operations and 
Homeland Security. The scope, complexity and frequency of these operations are presenting significant 
communication challenges. The SOPES specification provides a core set of information patterns that have the 
potential to bridge evolving community semantics and ontologies. 

However, the SOPES modelling profile can be used to address information requirements beyond the JC3IEDM.  The 
profile has been recently integrated into the second version of the Unified Profile for DODAF and MODAF to extend 
the abilities to architecture frameworks to specify information sharing and information protection policies within an 
enterprise, system of systems or systems environment.  Annex A to the SOPES specification describes this modelling 
paradigm. 

A.1 Overview 

The modeling approach used in this specification describes a set of reusable information patterns (building blocks) 
for a structured information store; in this case the JC3IEDM. The approach is intended to specify the operational 
policies for the composition, construction, processing and protection of information composites (or aggregates or 
business objects) as they are shared within and between operational nodes (e.g., systems, applications or services). 

The approach encompasses the following architectural elements: 

Contract – A contract represents a grouping of semantics and information flow controls which specify a formal 
information sharing agreement between two or more operational nodes or participants in a domain or community 
(e.g., Community of Interest [CoI]). Although provided and described in the approach, this element is not a 
normative component of this specification which seek to focus on the transactional information patterns for the 
JC3IEDM, the contracts and semantics are deemed the purview of the operational communities such as MIP. 
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Figure A.1 - Alignment to the UPDM 

Semantic – A semantic represents the build policy for an information composite or data composite that is specified 
as meaningful to participants (applications, systems and users) in a particular domain or community. Only exemplar 
semantics are provided in this submission as guidance to the design and development communities. 

Transactional - A Transactional represent the build policy for a reusable information building blocks, often realized as 
business objects comprising the community logical data model, for which there is likely also an underlying 
information or data store; they maintain the referential and data integrity of that store. Transactionals form the core 
of this specification. 

Wrapper - A Wrapper directly maps to a data instance (e.g., row of data in a database application) in the logical data 
model and the physical data model. 

Entity - An Entity is a Class mapping directly to the Physical Model specification for the underlying datastore. 

Figure A.1 illustrates the proposed relationship between four architectural views of the UML Profile for DODAF, 
MODAF, NAF and DNDAF (OV-2, OV-3, OV-7, and SV-1 1). These views combine to describe the flow and language of 
communication within the enterprise, operational environment of system depicted by an architectural model. 

The OV-2 identifies the flows of Resources (material, energy, organization, services, and/or information) between 
operational nodes which fall into the context of the architectural model. The flow of these need resources are 
realized on a “needline” between two or more operational nodes. Information flows realize the exchange of 
information-composites, which represent the aggregation of information and data elements described in the OV-7s 
and SV- 11s. 

The OV-3 characterizes the flow of the information composites by specifying frequency, timeliness, safeguards, 
quality, etc. for each information flow 
(Information Exchange Requirements 
[IERs]). 

The modeling approach aligns information 
exchange requirement or information 
flows (OV3) through to the logical and 
physical information definitions (OV-7 and 
SV- 11 respectively). The models establish 
policies (or rules) describing the logical 
construction of composite information 
from the information and data elements 
defined in the OV-7s and SV-1 1s. Each 
subtended element is built into a 
construction plan to systematically provide 
the information specified on the needline. 
The models are intended to provide 
traceability between the IERs and the 
application logic used to combine 
information and data elements of the 
information stores. 

The contracts group the semantics of the 
community into information sharing 
agreements. Providing a separation 
between the agreements and semantically 
complete information-composites makes 
the semantics architecturally reusable 
components. 

Each contract (information sharing 
agreement or ontological commitment) 
comprises one or more semantics (i.e., a 
COI exchange pattern with a defined 
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Figure A.2 - Alignment to the Zachman Framework 

 

meaning and purpose), which are specified by the participants to define information of relevance to their 
community. Each semantic is composed of one or more “Transactionals,” which specify the logical information 
elements to be exchanged and how they are combined to meet the semantic requirements of the community. 

The “Wrappers” represent the bridge between logical element of the transactional patterns and the physical data 
definitions SV-1 1, the Data Model. At the semantic, transactional, and wrapper levels there may also be formal 
domain rules and constraints that must be honoured by the parties to the contract. 

A.1 .1 Other Architecture Frameworks 

A separate alignment can be presented for other architectural frameworks. However, with the OMG's current focus 
on the UML Profile for DODAF and MODAF it seemed reasonable to present the architectural alignment to the 
related frameworks (e.g., DODAF, MODAF, NAF, DNDAF, PSAF and others). As an example the alignment to the 
Zachman Framework is depicted in Figure 2 (above). 

A.1.2 Model Extensibility 

Later in the document the modeling approach will be extended to model domain filters and attribution which extend 
the policy models for information tagged with security, Quality of service and other information considerations. 

A.1 .3 Modeling Objectives 

The following objectives are critical to developing the concepts for policy based information interoperability: 

 A modeling profile based on UML; 
o Explicitly capture, as part of architecture, the business rules for the export, transform and load 

processes, which are typically embedded in middleware applications. These include: 
o Community semantics, 
o Data store transactions, 
o Transformations (re-usable data patterns), 
o Data suppression filters, and 

 Domain business rules. 

 Assure that the concepts captured in the model enabled Model Driven Architecture (MDA) 
transformations to executable policies, which were alterable in the operational environment; 

 Make the models useful and meaningful to stakeholders and users; 

 Alignment with evolving architecture frameworks; 

 Provide full traceability to requirements; and 
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Figure A.3 - SOPES IEDM Scope 

 

 Design for change. 

In an object environment (e.g., OO DB or object layer), support objects can be used (with a single existence) by 
multiple information-composites (semantics and transactions) providing a highly efficient use of information. 
Traditional approaches use a single information instance per composite causing increase memory and processing 
(e.g., data synchronization). Using the multi-use approach enables “event-driven global update.” A single data 
change (new instance of data/information) can initiate the 
build and release of all transactionals and semantics in 
which the element is contained. 

Within the context of data, information and knowledge 
management, ontology is defined as an information model 
describing a set of concepts within a domain of interest and 
the relationships between those concepts. This specification 
describes a set of information exchange concepts for ECM 
situational awareness and collaborative planning. The IEDM 
describes a set of information and knowledge patterns 
based on JC3IEDM-compliant transactions and information 
elements (i.e., data entities). 

The Information patterns (Chapter 10 and 11) describe: 

 Individual information elements; 

 Classes: sets, collections, or types of objects; 

 Attributes: properties, features, characteristics, 
or parameters; 

 Relations: ways that objects can be related to 
one another, for data storage and in the construction of semantics (meaningful data object: this 
specification); and 

 Events (watch points): changes to the data environment (e.g., attributes or relations) that trigger an 
exchange of information. 

The specification describes a set of policies for constructing and interpreting information exchanges using reusable 
architectural components (information building blocks) aligned directly to commonly used architecture frameworks 
aligned directly to commonly used architecture frameworks as illustrated in Figure A.1 and Figure A.2. 

A.1.4 Modeling Concept 

The class models describe the policies (or rules) for processing information datasets; and aligning the datasets to the 
underlying data schemas. The objective of the models is three fold: 1) explicitly capture these key business rules as 
part the enterprise and System architectures; 2) retain corporate knowledge and understanding; and 3) separate the 
business rules from the underlying middleware application. Meeting these objectives, this modeling approach 
delivers auditable systems with increased interoperability, portability, and assurance. 

As illustrated in Figure A.3, the semantics, transactionals and wrappers document a set of policies for the processing 
of reusable informational building blocks that align the information Exchange Requirements specified in an 
information exchange requirements to the information schemas underlying the operational environment. 

A “Semantic” represents a set of policies for the construction or marshalling of information objects (i.e., a dataset) 
that is meaningful to the community (e.g., applications, systems, and users that form the context of architecture 
Model). The semantic is the uppermost concept in the ontological structure. When enforced by a system or 
application, a semantic realizes a complete information object (e.g., message payload) that provides a clear and 
consistent meaning for the community. 

A “Transactional” specifies the policy (or rules) for the construction or marshalling of reusable information sets (e.g., 
realized as information objects) derived from the underlying logical model and associated physical data store(s). 
These plans form a set of informational building blocks that encapsulate semantics of the stores and set the rules for 
semantic completeness. The Transactionals also assure a semantically consistent treatment of information as it 
transitions in and out of the data store. 
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Figure A.4 - Realization of Information 

The term “Transactional” was adopted to align its core concepts with that of a database transaction - a concept well 
understood by the data and information management communities. The base transactionals would encompass the 
referential and data integrity of the datastore(s). The transactions are combined to complete the semantic 
requirements of the community. When enforced by information systems and applications the transactionals realize 
composite information sets needed to complete one or more semantics. 

The “Wrappers” form the foundation of the modeling approach. The wrappers are a logical representation of 
instances of information elements that can be held within a data store. Each wrapper represents a single instance (or 
row of data) of data from the underlying store. 

A.1 .5 Realization of Information 

The models describe the policy (steps in a process) for systematically constructing or processing fused information 
sets (semantics). By definition the semantics ensure that the content exchange conforms to agreed community 
information patterns or semantics. It is important to understand that the models represent the specification for the 
aggregation or marshalling information - it is not the information carried on the needline; the actual information 
carried is referred to as an information-composite. 

Definitions: 

 Construction or Build: The process of aggregating information and data elements into their composite 
structures. 

 Marshalling: The process of de-aggregating information composites and storing the information and data 
elements in their specified information or data stores. 

A.1.6 Pattern Reuse 

The modeling promotes the reuse of subtended elements and composites: 

 An InformationComposite at the Semantic level can be reused to fulfill multiple commitments (Contracts), 
which use different messaging standards (e.g., National ADatP-3, OTH-Gold, MIP PDU). 

 An InformationComposite at the transactional level can be reused within multiple transactional and 
semantics. 

 An informationElement can be reused in multiple InformationComposites such that a single change (i.e., 
new data) cascades through each of the informationComposites enclosing the element; resulting in the 
updating of every contract and semantic 
holding the data. 

The model approach supports derive information 
patterns (Figure 4) that enable concepts like event 
driven global update of all InformationComposite 
enclosing single instances of data enclose in well 
specified semantics. 

A.1.7 Modeling Elements 

Figure A.5 illustrates the basic modeling elements 
used in the models and the meanings applied to them. 
It is evident from the limited and standard set of 
modeling elements that the core concepts are not 
overly complicated and supportive of a broad 
community of practitioners. 
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Figure A.5 - Basic Modeling Elements A.1.7.1 Class Diagram 

 

Figure A.6 - Modeling Elements 

 

The modeling approach uses UML Class Diagrams to 
identify all the subtended Classes of a Semantic or 
Transactional. Those stereotyped as “Transactional” 
are decomposed on a secondary class diagram. This 
modeling style aids in the readability of the models 
and simplifies each model element. Typically, the 
“Diagram Name” matches the “Enclosing Class” 
name whether a Contract, Semantic or a 
Transactional. Again this is for readability and 
publishing of the model. 

A.1.7.2 Classes 

Core modeling concepts: contracts, semantic, 
transactions and wrappers are included in the class 
diagrams as class stereotypes (Figure A.6). 

Navigating the arcs of the class diagrams defines the 
construction plans for each information aggregation 
(i.e., transactions and semantics). 

Classes fall into two categories on each diagram: 

 Enclosing Class 

 Subtended (Support) Class 

Each class diagram identifies policies (rules) for 
building reusable information composites in the 
runtime environment. A.1.7.3 Enclosing Class 

A.1.7.3.1 Overview 

The “Enclosing Class” is the focus of a diagram and 
encapsulates the policies associated with the 
aggregation of information at runtime. Each 
Enclosing Classes realizes an object that encloses the 
aggregate of information from each of its subtended 
classes. 

On the diagram, the enclosing class is the one to 
which the white diamond symbol on the association 
line is attached. The modeling style has one 
enclosing class on each diagram, which typically shares the same name and the diagram title. 

In a runtime environment, semantics and transactions are only instantiated in response to a data event, and only 
persist for the period needed to construct or marshal the information-composites specified. The information 
aggregates, enclosing the information element / data event, are built in response to that data event. 

Semantic and transactionals do persist their reference and policy data patterns comprising the community 
semantics. This informs the environment of the information instances active in the particular operational domain. 
These elements are persisted until explicitly removed from the systems’ or applications’ domain. This concept of 
persistence applies to both the semantic and transactional objects. 

The information or leaf-node elements of the information patterns are persisted in the operational domain.  

A.1.7.3.2 Identifying Class 

In each diagram, there exists one and only one subtended class that is labeled as the “Identifier.” The Identifier 
indicates that the class on the labeled aggregation holds data that identifies which instance data is included in the 
build or aggregation. This information typically includes Database Keys or Unique Identifiers of some venue. 
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Figure A.7 - Single Instance Data  

 

 

Figure A.7-1 – Addition of Filters  

 

A.1.7.3.3 Subtended Class 

The “Subtended (Support) Class” represents those classes, which are included within the build plan of the “Enclosing 
Class.” Each subtended class is linked to the enclosing class through an enclosing aggregation arc. Subtended classes 
can be Transactionals or Wrappers. 

A.1.7.4 Containment (Aggregation) Arc 

The aggregation arc is read with inverse logic. In the information (/data) environment - the enclosing Class only exists 
if the mandatory subtended Classes exist. UML traditionalists would read the arc in the opposite direction. However, 
the models describe a build or construction policy for aggregated information sets, which require the existence of 
their subtended (support) classes to meet their semantic rules. 

If mandatory subtended objects (identified through its multiplicity) do not exist, then the enclosing object cannot 
form or build and the policy fails. If optional subtended objects (identified through its multiplicity) do not exist, then 
the enclosing object builds with the information held by the existing subtended object. 

As illustrated in Figure A.7, a single subtended element 
can be contained by multiple enclosing classes. This 
specifies that a change in that subtended object cause 
both enclosing objects to build at runtime. By cascading 
this concept, the models establish policy for event 
driven global update capability - one data event cause 
all semantics enclosing that subtended object to build 
and, if meeting there semantic requirements, and be 
released and fulfill ontological commitments of the 
participating communities. 

In addition. As illustrated in Figure A7-1,  the 
containment arcs can contain a qualifier on the 
association which acts as a fixed fileter during the 
construction (aggregation) of a dataset under the 
prescribed pattern. These filters restrict the the 
collection of data to those datasets whose attribute 
(‘attributeName’) has a value of ‘properValue’.  E.g., 
self.securityLevel = “unclassified”.  Filters (qualifiers) 
are used selectively include or exclude information 
instances based on specific domain value instances at 
runtime. 

The formal SOPES Model provided in Section 10 does 
not caontain qualifiers as they are used to refine the 
model to specific operational requirements.  With 
respect to the formal SOPES Specification filters were 
identified as extensible features.   

A.1.7.5 Dependency Arc 

The dependency arc is used in the contract 
specification to identify the relationship between the 
contract and the semantics, where a change in the 
semantic affects the semantics of the contract - 
resulting in the exchange of information. The arrow 
representing a dependency specifies the direction of a 
relationship, not the direction of a process. 
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A.1.7.5.1 Association 

Navigable associations indicate that there is a relationship present between the associated entities in the underlying 
data store. Where an association is made between a Wrapper class and a Transactional class it is understood that the 
relationship exists between the Wrapper and the Identifier of the Transactional class. 

A.1.7.5.2 Identifier 

There exists on and only one “identifier” on each semantic or transactional diagram. The “identifier” identifies the 
subtended class that holds data elements needed for the construction of semantically complete information 
composite. This class would contain, as a minimum, the base Global Unique Identifier (e.g., Database Key, foreign 
keys or unique identifier) that would differentiate which transactional or wrappers (information element instances) 
are included in the construction of the composite (e.g., foreign key relationships). 

A.1.7.5.3 Multiplicity 

Multiplicity is presented on the aggregations to identify: 

 The optionality of the subtended class; 

 The number of information instances to be included in the construction of the information composite 
specified by the composite class (e.g., transactional or semantic). The multiplicity of the composite class is 
always “1.” 

 

Table A.2 - Multiplicity 

Multiplicity Indicators 

Indicator Meaning  

0. .1 Zero or one Optional 

1 One only Mandatory 

0..* Zero or more Optional 

1..* One or more Mandatory 

0. .n Zero to n (where n > 1) Optional 

1. .n One to n (where n > 1) Mandatory 

 

A.1.7.6 Constraint 

The Constraints, Figure A.8, govern the construction for the composite information object. There are three areas 
where the modeling includes explicit constraints: 

 Navigation constraint is used to constrain the inclusion of branches of the semantic tree based in specific 
domain value instances at runtime. Navigation constraints are primarily used when dealing with 
generalizations in the underlying data model (e.g., to select a specific subtype). The use of variable based 
constraints that apply only at runtime enables the selection of the specialization at runtime - allowing for 
variations in the semantic based on context.  The OCL used in the models guide the inclusion of 
aggregations in the construction sequences of the defined patters and not intented to ne executable. 
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Figure A.8 - Constraints 

 Domain Rules are used to govern the allowable combinations of domain values in the underlying datastore 
(not illustrated). Domain rules can be contained within a single wrapper (entity / table) or cross tables. 
Domain rules are captures within the annotations of the classes. 

Constraints are modeled in Object Constraint Language (OCL). In the future constraint definitions may be modeled 
using the structured English or Semantic Business Vocabulary and Rules (SBVR).   To properly interpret a constrained 
aggregation, it is intended that the constraint be evaluated before its multiplicities.  Should the constrain fail, the 
multiplicity is implicitly evaluated a zero. 

For all instances of the constrained navigation the initial element 'self' is the enclosing Transactional,  
and in the case of the example from diagram A.8 self refers to ‘InformationTransactional_1’.   The second element of 
the constraint is the Wrapper instance which must be a directly subtended element of the enclosing Transactional,  
and in this case the Wrapper instance is 'Wrapper_1'.   The third element is the named Wrapper Attribute featured 
on the specified Wrapper,  and in this case this element is 'catCode'.   The final element is evaluated against the 
constraint, and in this case the value is 'domainValue'. 

A.7.7 Tagged Value 

A tagged value is a combination of a tag and a value 
that gives supplementary information that is 
attached to a model element. A tagged value can be 
used to add properties to any model elements and 
can be applied to a model element or a stereotype. 
These tags are used to identify to the implementer 
specific information about the design pattern not 
carried with the attributes of the runtime object. 

The tagged values used in the model include: 

 isIdentifier identifies the start point for the 
build of an information composite or artifact. 
There exists one “identifier” per enclosing class. 

 isWatchPoint both identifies the start point for 
the construction of the semantic contained in 
the model and identifies to the runtime what 
triggers the build of a semantic (data change in 
the subtended object); this tagged value, is a 
Boolean and assigned to an aggregation arc 
within a class model. 

EntID holds the unique identifier for its corresponding entity in the underlying datastore. entID is associated with 
classes stereotyped as “Wrapper.” 

EntName holds the name of its corresponding entity in the underlying datastore. entName is associated with classes 
stereotyped as “Wrapper.” 

A.1.7.8 Independent Existence of Information Elements 

Each subtended element within a model exists and persists independently from its enclosing classes; as a row of data 
can exist within a database table without the referential integrity necessary to complete a transaction or build 
aggregate information sets. This independent existence of information and data elements (a non-traditional 
interpretation of class diagrams) reflects the reality of information objects: 

 Information or data elements can exist in the environment without providing the completeness necessary 
for meaningful community semantics; and/or 

 Information elements may meet the requisite requirements for one community but not another. 
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A.2 Reading the Models 

A.2.1 Semantic Construction 

The first principle of the modeling approach is that the mandatory (multiplicities of 1, 1 ..n, 1 ..*) subtended must 
exist in the information domain as a prerequisite to the continuation of the build of enclosing transactionals. This 
policy ensures: 

 Semantic completeness of all aggregated data sets based on those policies; and 

 Semantic completeness of all data marshalled from received information composites (semantics must 
complete before information and data elements a place in information stores). 

A.2.2 Marshalling a Received Data 

When information is received its semantic type is identified, the information and data elements are parsed and 
processed. If all mandatory elements of the semantic are available – the information and data elements can be 
further processed as appropriate (e.g., placed in a data store). 

If the semantic does not complete there are several options to the Designer: from discarding the data and reporting 
an error to and interactive request (from the producer of the data, from local store, from an operator, etc.) for data 
needed to complete the semantic. These are operational and design considerations outside the scope of this paper. 
In general, it is expected that at the COI-level some policy with respect to guaranteeing referential completeness 
would be established (e.g., a sender can only embed an information reference if it can provide the referenced data 
on request). 

A.2.3 Class Hierarchy 

The models can be developed as a top-down model starting with conceptual information sharing agreements which 
realize the needs of a community or needline. The models can also be developed using a bottom up approach using 
the data and information attributes of a legacy database application design (database schema) or through and 
iterative cycles of specification at each of the conceptual, logical and physical layers of the model. The intent is to 
provide users, analysts and developer an evolutionary method of development that yields reusable architectural 
components. As previously identified, the modeling constructs, illustrated in Figure A-1, include: 

 CONTRACT) - identifies the semantics included in the information sharing agreement. 

 SEMANTIC – specifies the information elements to be aggregated in to the document, message or 
information composite to be shared based on the community agreements. 

 TRANSACTIONAL – specify the build-plans of information element from the foundation classes. 

 FOUNDATION – identify the based information and data elements and align logical “wrapper” classes that 
underpin the models. The wrapper classes represent a single instance of an information element in the 
environment. 

The models can also be developed bottom-up and middle-out depending on the use of legacy application and data 
stores, or the focus of the projects involved. The modeling techniques employed provide the ability to associate class 
attributes to accommodate differing naming conventions as one moved between the physical, logical, and 
conceptual (strategic or business) views of the architecture. The techniques also provide the ability to model 
attribute-method relationships to support data transformations (e.g., when integrating legacy data environments 
into a system-of-systems environment). 

Figure A.1 illustrates the relationships between elements of the models and other views in an architecture 
framework. It is intended that the policies, or rules, generated from the models realize the elements currently 
defined by the UPDM; specifically, the realization of a needline’s information-flow and its information-composite 
(e.g., Message). The information composite is realized by the enforcement or execution of the derived policies by 
deployed systems, applications and services in the environment. This specification translates the models into 
multiple platform specific models (PSM), i.e., a set of JAVA Classes (Annex E) and XML Schema (Annex D). 
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Figure A.9 - Contract 

 

The Contract enables the specification of community semantics outside the constraints of a needline and its 
associated operational-nodes. The Contract allow the formation on conceptual communities of interests (CoIs) 
outside the specification of its operational configurations. In its simplest form, a Contract can have a one-to-one 
relationship with a Needline. 

The remainder of this section describes the use of the policy models within an architectural model. These 
descriptions will reflect a top-down development strategy and are critical to understanding the utility of the SOPES 
IEDM model. The integration of policy models with the SOPES semantics metamodel enables a rich collection of 
information management techniques to be executed by an operational information exchange framework. 

A.2.4 Stereotypes 

The models define the following stereotypes to describe the hierarchy of the models, tying business architecture 
requirements to the underlying information stores: 

 Contract identifies a class as a contract; 

 Semantic identifies a class as a Semantic; 

 Guard identifies a class as a semantic guard; 

 Transactional identifies a class an enclosing 
transactional; 

 Wrapper identifies a class as a wrapper for an 
instance of an information element; 

 Entity (which may be prefixed with the name 
of the data store and version) identifies a 
Modeling Element. 

A.2.5 Contract 

A “Contract” is simply an agreement to exchange 
information between two or more participants. As 
illustrated in Figure A.9, the contract is uses to realize 
the information exchange requirements of either a 
needline or a community of interest. The Contract 
sets a policy (exchange rules) by identifying which 
Semantics are included in the contract. This 
relationship is established by setting a dependency 
between the contract and the included semantics. 

The semantics can be re-used to satisfy the 
requirements on multiple contracts; meaning, that any time there is a data change to the information contained 
within a semantic, the change would be reported to all the participants to each of the contracts that include the 
semantic. Applying this rule means that: 

 Semantics become reusable architectural components; and 

 Event (data change) driven global update levels of interoperability are achieved. 

 In addition to the containment for the semantics comprising and information flow, a “Contract” extends the 
definition of information exchange requirement to include: 

o The participating operational nodes; 
o The communication channel; 
o The distribution specification (e.g., language, schema, format, syntax and protocol); 
o The agreed quality of service; 
o The potential threats to the exchange; 
o The information sensitivity (e.g., caveat and classification); and 
o The participants and their required accreditations. 

These concepts are not core to SOPES IEDM, and thus, are not discussed in this document. They are part of a broader 
discussion on the role of architecture and architecture frameworks. They play a critical role in specifying the context 
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Figure A.10-Semantic 

 

Figure A.11 Filtered Semantic 

and requirements for information exchange and thus are beyond the critical and foundational information (or 
semantic) interoperability addressed by this specification. 

A.2.6 Semantic 

A semantic, Figure A.10, represents the 
specification for a complete data, which is 
considered meaningful to a community, 
organization, system or application; meeting one 
or more of the information flow requirements 
specification for a needline. The semantic is 
defined by the community, needline or 
application interface, while transactionals are 
closely linked to the underlying data store. The 
semantic can be thought of as a schema (e.g., 
IC.XSD) and the InformationComposite thought 
of as the instance document (e.g., IC.xml). 

As illustrated, class attribution is not carried by 
the semantic. The semantic encloses and carries 
all attributes contained within its subtended 
transactionals and wrappers. 

 

A.2.6.1 Filtered Semantic 

A “Filtered Semantic” represents a semantic with all filters, contained in the semantic or its support transactionals, 
set in the operational environment. Filters can be set by default during design or added during runtime. The 
constraints, describing a filter are modeled as illustrated in Figure A. 10. A filtered semantic may be used to enforce 
policies that enable brevity and efficiency by removing from the InformationComposite content (but leaving a 
reference) that is assumed, or known, to have already been exchanged. 

A.2.6.2 Guard Semantic 

As “guard semantic” is modeled in the same 
manner as a semantic (above). In practical terms 
the “guard” is a semantic stereotyped as - 
“guard.” A Guard builds like a semantic - but 
works to lock the information contained in its 
structure from release on any contract. This 
concept will be explored in later document that 
address the potential extensions to this UML 
modeling profile information (semantic) 
interoperability. 

Identifying this concept is intended to illustrate 
the extensibility of the approach as mandated by 
the request for proposal (RFP). 
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Figure A.12 Transactional 

 

A.2.7 Transactional 

The Transactional, Figure A.12, represents the core 
concepts within the models. They allow the 
information architects to construct reusable 
informational building blocks, upon which to build 
multiple community semantics. Transactionals 
document the constructions plans for an 
information/data store and ultimately link 
community information needs to the structure of 
the underlying stores. 

Although there is only one form of transactional, in 
the course of the follow-on discussion we preface 
the transaction to identify its role in the 
construction plan and the structural hierarchy of 
the semantic: 

 Enclosing _Transactional identifies the 
transactional which forms the focus of the diagram. The enclosing transactional can be identified by the 
diamonds on the aggregation arc. They are always on the role-end associated with the 
Enclosing_Transactional. 

 Subtended_Transactional (or Support_Transactional) identifies the transactionals contained by a enclosing 
transactional. 

 Identifing_Transactional or Identifying_Wrapper, identifies the subtended transactional or wrapper that 
carries the keys or identifiers needed to built the aggregation. The Identifing_Transactional or 
Identifying_Wrapper is identified by the “Identifier” label on its aggregation arc; representing an 
aggregation arc with a tagged value isIdentifier set to “true.” 

 WatchPoint_Transactional is a transactional with an associated watchpoint data event that triggers the 
build of a semantic and all its subtended transactionals. Each WatchPoint Transactional has one aggregation 
arc with an 'isWatchPoint' tag set to True. 

A single aggregation arc may have both an isIdentifier tag and an isWatchPoint tag. This Transactional must be built 
starting with the Wrapper at the end of the aggregation arc with the isWatchPoint tag. If both an isWatchPoint and 
an isIdentifier tag are present in the Transactional model on different arcs then the Transactional may be built as a 
WatchPoint or a support Transactional. 

The rules that identify if a Transactional forms a watchpoint: 

 Must contain a composition arc, tagged as 'WatchPoint = True,' that connects to a Wrapper; 

 Must hold at least enough data to provide referential integrity when persisted to a data store; 

 Complete in it's meaning, ie modeler must include all mandatory as well as optional tables that when 
combined, provide a coherent picture; 

 Comprise basic building blocks for Semantic Artifact; and 

 Maybe subtended as well as standalone. 

A.2.8 Foundation 

A.2.8.1 Wrapper 

A Wrapper is a Class that directly maps between the logical data model and the physical data model. Wrappers 
therefore exist between the Logical Information Security Architecture and the Physical Information Security 
Architecture. Figure xx illustrates how this mapping is modeled. 



 

 Page 14 

 

Figure A.13 - Constraining Navigation 

 

A wrapper represents the metadata definition for a single instance (or row in the case of a traditional RDBMS) of 
data from the underlying information store. 

A.2.8.2 Entities 

The entity calls represent the physical entity (table) definitions, including the complete attribute metadata 
definitions, as well as attribute domain and domain business rules. The metadata associated with the entity in 
assigned to the wrapper and carried through the remainder of the model. 

A.2.9 Build Plan 

The models specify the policies or rules governing the aggregation or marshalling of information elements included 
in the community semantics in a manner that is consistent with the structures of the underlying data store. These 
policies bridge between the community semantics and information patterns (Transactionals) derived for a given data 
store. The policies (or rules at execution) are enforced by the information applications and services designed to 
broker information within and between information systems. The models represent a set of architectural views that 
provide a platform independent specification for the environmental policies governing the exchange of information 
between operational nodes. 

The information pattern provide a systematic build (or construction or navigation) plan for the aggregation of 
information elements into the Information composite (semantics) agreed to by the community or the participants 
(systems, applications, services or users) to the exchange. Adherence to the build plan assures that information 
stores are used in a consist manner and the semantic integrity of the information is maintained. 

The SOPES Specification (Annex C) provides guidance on the sequence of the build plan in the form of an 
“oclConstructionSequence”.  These elements are intended to be informational in nature and not intended to 
executable in their current form.  It is up to a developer to determine if it is beneficial to include these sequences 
into the formal expression of function.  

A.2.9.1 Initiation of Build 

A “Build” refers to the formation of a semantic or transactional within the environment to accommodate a change in 
information available in the operational environment. The build or processing of new information starts when new 
information, encompassed by a “watchpoint” transactional, is identified. The existence of a new data event within a 
watchpoint causes that watchpoint transactional to build, together with all the transactionals and semantics that 
enclose that watchpoint. 

The watchpoint works in a similar manner to a database trigger, but initiates a business object to respond to its 
environment - rather than a database application triggering a store procedure. 

A.2.9.2 Navigation Constraints 

Figure A13 illustrates the ability of the architect to 
adorn the models with constrains that direct 
specific build steps based on the value of an 
attribute at runtime. This addresses inclusions or 
exclusions of specialized objects which can only be 
determined at runtime. The build plans integrate 
these navigation constraints. 

The SOPES OCL utilizes two constraint patterns that 
are directly related to the ConstructionSequence. 
The naming convention for these two patterns 
include their respective roles within the 
ConstructionSequence i.e., a_Discriminator_mN0, 
a_Discriminator_mN 1, or mN0_Enforced_a, 
mN1_Enforced_a. 

These two types of ConstructionSequence 
constraints are linked by the use of attributes 
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whose enumerated domains include a specific reference from the “a” object type to the linked mN# object types. 

The use of a_Discriminator_mN# requires that the object "a" have an attribute whose enumerated domain 
references a set of object types mN# as well as a readPlan between “a” and the object type in the set. For the sake of 
clarification it should be noted that though this domain explicitly references these mN# object types the 
enumeration may also includes other choices that are not associated to objects. In the cases of a Wrapper to 
Transactional based Discriminator the relationship is to the WatchPoint/Identifier of the Transactional 

As an example; in Figure A.1 1 objects of type Point have the enumerated domain attribute point-category-code 
which references objects of type AbsolutePoint the identifier of Absolute_Point (enumerated domain value ‘ABS’) 
and RelativePoint the identifier of Relative_Point (enumerated domain value ‘REL’) as well as other attribute values 
which do not reference objects of any type. If in Point_Item an object of type Point exists and the data in point-
category-code is ‘ABS’ then the associated (and now mandatory) Absolute_Point object must exist for the Point_Item 
to complete instantiation correctly, furthermore the ‘ABS’ data also prohibits the construction of a Relative_Point 
object. 

As a counterpoint to the a _Discriminator _mN# constraint is the mN# _Enforced _a which requires that if an object 
of a set mN# exists then the enumerated domain attribute in “a” must be that value which refers to the specific 
object type member of mN#. Continuing our example from above, Location has the enumerated domain attribute 
location-categorycode which associates Location with objects of type GeometricVolume, Line, Point, and Surface. In 
objects of type Point_Item the object of type Point is the identifier and is constructed before the object of type 
Location, this requires that the enumerated domain value for the attribute location-category-code be ‘PT’ if the value 
is any other then the Point_Item should not complete instantiation. 

Object constraint language is used to constrain navigation (Section 8) on a containment arc to assure the correct 
aggregation of subtended element in an information construct and to describe the navigation/construction plan 
(Annex C) derived from the UML. An exemplar for the use of navigation constraints is illustrated in Figure A. 11. 

Table A.3 provides an example of the OCL used to constrain navigations: 

 

Constraint Details 

Point_Item_Discriminator_Absolute_Point inv: self.Point.point-category-code='ABS' 

Point_Item_Discriminator _Relative_Point inv: self.Point.point-category-code='REL' 

Point_Enforced_Location inv: self. Location.location-category-code='PT' 

 

The Wrapper containing the evaluation attribute (e.g., Point) on a navigation constraint must have a multiplicity of  1 
(1..1)  within the data pattern.   . In reference to Figure A.12 and Table A.3 both Point and Location are constraint 
evaluation Wrapper instances and thus are  required to have a cardinality  of 1..1.  It should be noted that the 
Wrapper Attribute which holds the value must comply with the model's domain constraints and as such it is possible 
that the value held by the Wrapper Attribute could properly be expressed as NULL. 
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A.3 Developing the Information Exchange Models A.3.1 Top-Down Approach 

For new environments, containing no legacy, a top down approach can be used. A top-down approach follows the 
traditional enterprise architecture methodology. 

A.3.2 Bottom-up Approach 

In most environments, new architectures are developed based on legacy environments, which have significant 
investment in their underlying information store. It would be unreasonable to propose a strategy the only supports a 
top-down approach that may not align with legacy environments in the long run; requiring major upgrade and 
modification to working systems. A bottom-up approach addresses the possible integration of legacy information 
applications and stores. 

Bottom-up was the approach used to develop the SOPES IEDM specification and prototype implementations. The 
JC3IEDM, in the form of the MIP information Resource Dictionary (MIRD), was used for the development of the 
SOPES IEDM Specification Foundation Model. The MIRD content documents the results of a legacy ongoing COI 
consensus process that captures many unique consultation, command and control requirements in a normalized and 
generic model. In the process, visibility of the individual business requirements has been somewhat lost. 

Today a bottom-up approach can document the available normalized and generic transactional semantics supported 
by the information stores, but not the business requirements from evolving information architectures. 

A.3.3 Hibrid Approach 

The most likely approach to be adopted by projects is a hybrid environment where team members would define 
business requirements in a top-down approach, and others would build up project information based on a bottom-
up documentation effort on the legacy information stores. This requires the two efforts to align at the semantic level 
of the model. The models cater directly to this requirement. 

The hierarchical modeling approach provides SOPES implementer with several options and locations where this 
integration can occur. 

 

A.4 Linking to UPDM 

A.4.1 Connecting to the Architecture 

One of the first steps in the architectural process is the identification of the needlines between operational nodes. As 
illustrated in Figure A.14 the needline represents a stereotyped association between two operational nodes. 

 

Figure A.14 – Needline 

 

The next step in the architecture process is the identification of the information flows between the operational 
nodes; bidirectional information flows are illustrated in Figure A. 15. In the runtime environment the information 
flows realize the exchange of information-composites comprising the content of a community semantic. 
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Figure A.15 - Information Flows 

 

The information-composites are realized by the execution or enforcement of the information exchange policies 
defined by the models. The information exchange policies defined by the models (when executed) realize the 
information- composites realized by the information flows Figure A.16). 

 

 

Figure A.16 - Realizing Information Flows 

 

Lastly, the information flows (information composites) are realized on the needlines (Figure A.17). At this point, 
having semantic realized by the execution or the enforcement of policies derived from the semantic model we have 
full traceability from the needline to the instance data in the SV-1 1 data store. 

 

 

Figure A.17 – Semantics 
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Figure A.82 - Constraining Navigation 

 

 

A.5 Community Defined Completeness 

The modeling concepts presented support COIs implementing different approaches to specifying semantic and 
referential completeness. This section will discuss exemplars, from the SOPES IEDM Specification, showing 
alternative COI approaches for specifying completeness using the model. 

In the SOPES IEDM specification the “Materiel_Item” and its necessary encyclopedic Type data (“Materiel_Type”) are 
not formally associated until the Semantic (“Materiel _SA”) is formed. In that exemplar, the Materiel_Type is 
identified as optional (multiplicity: 0..*). For the MIP community this appeared to depart from the referential 
integrity prescribed by the JC3IEDM Schema (i.e., all Object_Item must be associated with an Object_Type 
(multiplicity: 1 ..*). As illustrated in Figure 1.18, the Materiel_Item transactional does not include the Material Type 
information prescribed by the JC3IEDM Schema. The SOPES submitters took the assumption that type_side data is 
often preloaded into a data store and not required in each transmission. The authors provided the flexibility in the 
specification for the individual communities to make these assertions in their specified semantics an or through the 
use of filters. 

 

Figure A.17 - Realization of Information 

As illustrated in Figure A.19, the SOPES IEDM 
exemplar semantic for Materiel (Materiel_SA) 
encloses Materiel_Item and Materiel_Type, thus 
aligning the referential integrity of the models and the 
JC3IEDM Schema. The multiplicity could be defined to 
require Materiel_Type infomration. 

Alternately the community can extend the core 
models to include additional transactionals which 
embed the “Item” and “Type” side data. The SOPES 
specification leaves this within the purview of the 
individual communities. This approach is provides 
flexibility and extensibility to the core specification. 
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Figure A.18 - Realization of Information 

 

Figure A.20 - Domain Filter 

 

A.6 Modeling Extension Examples A.6.1 
Domain Filter 

Domain Filters can address a number of 
information quality requirements, including 
network performance, information overload and 
priority to name a few. In this section we will look 
at the use of filters to address elements of 
security (e.g., Filter based in security tags in the 
data). 

 

A filter is modeled as a constraint on the role end 
associated with the enclosing transactional or 
semantic. Figure A. 19 illustrates the inclusion of a 
domain filter to the inclusion of “Transactional _1 
,” which limits the inclusion of an information 
_composite into the build, if its SecurityLevel 
attribute is set to “unclassified.” An aggregate 
security attribute can be modeled and evaluated 
at runtime based on domain specific attribute combinations (i.e., with out the use of the specific subtended 
“SecurityLevel” attributes). For example, in the context of Action, a domain policy may be that future planned tasks 
are classified, thus: 

 <<invariant>>{ if Wrapper::ActionTask.CategoryCode == "Plan" AND Wrapper::ActionTask.planned-
start-datetime > Time. Current THEN Context.SecurityClassificationLevelCode == "Confidential"} 
(Computed Security Caveat) 

 This security example can be extended in to other areas, including: 

 <<invariant>> { if Wrapper::Wrapper_1 .Priority == "High"} (Quality of Service example) 

 <<invariant>> { if Wrapper::Wrapper_1 .PrivacyCode == "Private"} (Privacy example) 

 <<invariant>>{ if Wrapper::Wrapper_1 .Caveat == "NATO" OR Wrapper_1 .Caveat == "5Eyes" } 
(Release-ability example) 

A.6.2 Methods 

Within the modeling approach, methods can be 
used to specify transformations or aggregations of 
attribute values during the build of an 
informationComposite. Figure A.21 illustrates the 
basic construction of a transformation. The 
attribute(s) associated with the transformation 
are link through dependency arcs. The index on 
the arc is a tagged value which indicates the order 
index of the parameters to the method. The order 
index identifies the order of the attributes in a 
method call. 
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Figure A.21 - Transformation 

 

 

Figure A.22 - Processing Tags and Labels 

 

 

Figure A.22 - Forced Data Change of label 

 

 

 

A security example for the use of methods is 
illustrated in Figure A.22. As illustrated, the method on 
the enclosing- transactional processes the runtime 
security level tags of the subtended-elements 
processes and then sets security level on the 
generated informationComposite. The diagram does 
not prescribe the methodology for determining the 
actual level - merely, that a runtime determination 
needs to be made. 

The specification and design of the method can be 
handed off to a security analyst or linked to existing 
policy. Either way, the need for a security decision 
point in the processing of the information is now 
captured in the architecture. 

Note: the specification of the algorithm can be 
modeled independently and added to the model. This 
model only indicates the existence of the decision 
point. 

A.6.3 Forced Method 

Figure A.23 illustrates a direct force of the security 
level base on the existence of the subtended objects 
by an analyst specification that a combination of 
subtended information classes automatically 
mandates a specification of a security level. In this case 
the classification of the enclosing object is forced to a 
level independent of the classifications of the 
subtended objects. 

This option adds flexibility to the security 
considerations of the model. 

 

A.6.4 Selective Replication 

Figure A.24 illustrates attribute-to-attribute 
association. This aspect of the notation can be used to 
specifically select which data elements (attributes) are 
processed during the processing of a composite 
object. 

This modeling approach can also be used to migrate 
from physical names, to logical names to business 
named (community terminology) as the objects build. 

If the attribution is not provided, it is assumes that all 
attributes are included in the build. 

This modeling option also aids in the defining security 
restrictions on the release of specific data elements. 
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 Figure A.23 - Selective Replication 

 

Additional Infromation on SOPES, the modeling profile (including imolemented extensions) and the first SOPES IEDM 

Implementation (COIL for SOPES IEDM) can be found on the ASMG website (http://www.asmg-ltd.com).  Or by 

contacting: 

 

Mr. Michael (Mike) Abramson, President 

Advanced System Management Group Ltd. 
265 Carling Avenue, Suite 630 

Ottawa, Ontario  K1S 2E1 
Tel:  613-567-7097 ext 222 

Cell: 613-797-8167 
Fax: 613-231-2556 

 

http://www.asmg-ltd.com/

